Regioselectivity in radical reactions of C₆₀ derivatives

Benoît de La Vaissière,^a John P. B. Sandall,^a Patrick W. Fowler,^a Pedro de Oliveira^b and René V. Bensasson^b

 ^a School of Chemistry, University of Exeter, Stocker Road, Exeter, UK EX4 4QD
^b Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, CNRS UMR 8646, INSERM U201, 43 rue Cuvier, 75231, Paris Cedex 05, France

Received (in Cambridge, UK) 13th October 2000, Accepted 13th March 2001 First published as an Advance Article on the web 30th March 2001

Transient electronic spectra of mono-hydroxylated fullerene radicals, initially derived from water soluble malonic acid derivatives $(C_{60}[C(COOH)_2]_n, n = 2-6)$ reacting with hydroxyl radical at a diffusion-controlled rate, show a unimolecular growth in absorption on a timescale of 0.1–1 ms. It is suggested that the reason for this slower growth is migration of the hydroxy group to a more stable position. Semi-empirical molecular orbital (AM1 and PM3) calculations on the symmetry-distinct $C_{60}[C(COOH)_2]_3OH^-$ anions derived from two most abundant tris(malonate)s demonstrate a relation between Coulson's free valence index for radical attack at a particular position and the stability of the corresponding product. They also suggest that after attack of the hydroxyl radical at the first encountered double bond, migration subsequently takes place to the position of highest free valence.

Introduction

An important feature of C₆₀ chemistry is the addition of carbon-centred radicals R' to the fullerene cage. These reactions have been studied by a number of techniques including EPR, mass spectrometry, laser flash photolysis and pulse radiolysis.¹⁻⁵ Also, it has been observed that the hydroxyl radical, HO', generated by pulse radiolysis in aqueous solutions, reacts with water-soluble malonic acid fullerene derivatives $C_{60}[C(COOH)_2]_n$, $n = 2-6.^6$ Mono-hydroxylation of the fullerenes is expected since, under these experimental conditions, the concentration of HO' radicals is an order of magnitude lower than that of the fullerene. During this reaction, transient spectra are observed in which the most prominent maximum shifts from 437 to 330 nm when n goes from 2 to 6. These spectra are considered to be due to the addition of the HO' radical to the double bonds of C_{60} , since the reaction takes place with a diffusion-controlled rate constant of $\sim 10^{10} \text{ M}^{-1} \text{ s}^{-1}$ which is three orders of magnitude greater than that for the reaction of HO' radical with the other possible target, malonic acid itself (~ 10^7 M⁻¹ s⁻¹), which takes place by hydrogen abstraction.⁷ It is also consistent with the well documented reaction of the hydroxyl radical with unsaturated bonds.⁷ The absorption profiles of these OH-adduct fullerene radicals⁶ are similar to those resulting from the addition to C_{60} in toluene of less reactive carbon-centred free radicals including trichloromethyl ('CCl₃), trichloromethylperoxyl (CCl₃O₂') in CCl₄, benzyl (PhC'H₂), tert-butyl ((CH₃)₃C'), trichloromethyl ('CCl₃) and dichloromethyl ('CHCl₂) variously in toluene and tetrachloromethane with maxima at 420-440 nm.5

There is evidence that, after all the HO[•] radicals have reacted on the microsecond timescale, a further unimolecular growth in absorption takes place over a period of 0.1-2 milliseconds. This slow growth is most apparent in the case of the tris-adducts, *trans-3,trans-3,trans-3* and *e,e,e* (Fig. 1), reaching respectively to 25 and 10% above the absorption attained immediately after the diffusion-controlled HO[•] addition (Fig. 2a, 2b), before the final decay of the radicals occurs. This relatively slow absorbance modification, with no significant change in spectral profile, is clearly not due to further rapid HO[•] addition, and is most simply interpreted as indicating a structural rearrangement *via* an intramolecular migration of the hydroxyl radical, from

Fig. 1 Schlegel diagram and IUPAC numbering for C_{60} and derivatives. For the *trans*-3,*trans*-3 isomer (D_3 symmetry), the malonic acid groups bridge the double bonds defined by carbon atoms numbered 1,2; 39,40 and 48,49. For the *e*,*e*,*e* isomer (C_3 symmetry), the malonic acid groups lie across the double bonds defined by atoms numbered 1,2; 22,23 and 18,36.

the initial site of attack on the first position encountered at random, towards a site of higher thermodynamic stability. Rearrangements leading to isomerization are known in other contexts of three-dimensional fullerene chemistry.⁸ After this spectral change, the hydroxyfullerene radicals are observed to have a lifetime of the order of tens of milliseconds.⁶ The purpose of the present work is to discuss this possible intramolecular migration of the HO' group using calculation as a guide to the possible outcomes.

Results and discussion

It is known that UHF calculations on open-shell systems at the semi-empirical level suffer from spin-contamination and other problems and cannot be relied upon to give consistent total

DOI: 10.1039/b008273m

Table 1 Site of OH addition, standard heat of formation (AM1, kJ mol⁻¹) relative to most stable isomer and F_r , the free valence index, for the nine symmetry distinct isomers of the *trans*-3, *trans*-3 anions and the 18 isomeric *e*, *e*, *e* anions, $C_{60}[C(COOH)_{2}]_{3}OH^{-1}$

Addition to <i>e,e,e</i> isomer				Addition to trans-3, trans-3, trans-3 isomer		
P	osition	Energy (AM1)/kJ mol ⁻¹	F_r index	Position	Energy (AM1)/kJ mol ⁻¹	F_r index
10	0	17.8	0.1536	21	17.9	0.1490
13	3	14.4	0.1461	8	28.6	0.1400
	7	33.4	0.1192	24	16.5	0.1736
8	8	26.2	0.1295	25	18.5	0.1676
28	8	17.7	0.1703	23	17.4	0.1640
20	6	20.1	0.1734	43	12.9	0.1710
30	0	10.7	0.1787	42	15.7	0.1585
24	4	5.1	0.1768	41	5.9	0.1780
29	9	17.7	0.1707	22	0.0	0.1785
2:	5	25.3	0.1369			
2	7	5.6	0.1788			
4	5	5.8	0.1790			
47	7	7.5	0.1790			
12	2	0.0	0.1739			
40	6	11.1	0.1757			
(6	9.2	0.1721			
9	9	12.1	0.1693			
1	1	14.2	0.1626			

Fig. 2 Transient electronic spectra obtained on reaction of hydroxyl radical with the water-soluble malonic acid fullerene derivatives, *trans*-3,*trans*-3,*trans*-3 and *e,e,e*, showing unimolecular growth in absorption on the ms timescale.

energies for series of molecules.⁹ Instead, in order to determine the most thermodynamically stable site of the HO[•] attack, calculations using the semi-empirical AM1 method ¹⁰ have been carried out on the closed-shell product of the reaction of hydroxyl radical and the radical anion $C_{60}[C(COOH)_2]_3^{-}$. The HO[•] radical was added to each of the symmetry-distinct vertices of the *trans-3*,*trans-3*,*trans-3* and *e*,*e*,*e* cage isomers of the anion, leading to the closed-shell species, $C_{60}[C(COOH)_2]_3^{-}$. OH⁻, the structure of which was then fully geometrically optimised to obtain its energy (Table 1). This approach of course assumes that the relative thermodynamic stabilities of these closed-shell hydroxide anions parallels the stabilities of the structurally corresponding hydroxyfullerene radicals. Test calculations indicate that this is a reasonable assumption: calculated UHF energies for the radicals, though expected *a priori* to be less reliable, were found to show a general correlation with those of the corresponding closed-shell anion. In order to interpret the more reliable anion energies, we have also carried out calculations of free valence indices using Hückel molecular orbital theory.

The free valence index F_r , defined by Coulson¹¹ [eqn. (1)],

$$F_r = N_{\max} - N_r \tag{1}$$

measures the ease of attack of free radicals at an atom r in a conjugated π system where N_r is the sum of π bond orders over all bonds joining atom r to the remainder of the π system. N_{max} is the maximum value of this sum and depends on how many other sp² carbons are attached to the atom in question: N_{max} is $\sqrt{3}$ for an sp² carbon attached to m others. This index has been successfully applied¹² in the creation of a simple model for radical addition to fullerenes. In particular, it was shown that the *final product* arising from radical addition could be predicted by assuming *initial attack* at the position of highest free valence. In the present work, these free valence indices are calculated on bare C₆₀ cages where a double bond and its four neighbours have been removed from the π system for each site occupied by a malonic acid addend. Separate calculations are made for the two isomers *trans-3,trans-3,trans-3* and *e,e,e*.

Fig. 3 displays the correlations for each isomer between the value of the free valence index and the heat of formation of the corresponding $C_{60}[C(COOH)_{2}]_{3}OH^{-}$ anion, depending on the position of the HO' group. The correlation is reasonable $(r^2 = 0.70)$ and both methods give a similar set of preferred sites for the attack of hydroxyl radical, since high values for the free valence indices correlate with low heats of formation of the product. The range of heats of formation (AM1) of these isomeric anions is 25 kJ mol⁻¹ for the malonic acid derivative *trans*-3, *trans*-3 and 35 kJ mol⁻¹ for the *e*,*e*,*e* derivative. Calculated heats of formation using the PM3 Hamiltonian correlate well with the AM1 results ($r^2 = 0.869$ (*e*,*e*,*e*), 0.936 (*trans*-3, *trans*-3, *trans*-3)), and lead to the same set of preferred sites for final attachment.

The following conclusion may be drawn from this correlation: the ease of attack of the hydroxyl *radical* on a particular position is reflected in a greater calculated stability for the corresponding hydroxide anion. For a highly reactive radical such as HO[•], it is likely that the final energy of the product will

Fig. 3 Correlation between the free valence indices and the heats of formation (AM1) of the isomeric anions *e,e,e* and *trans-3,trans-3,trans-3* $C_{60}[C(COOH)_{2}]_{3}OH^{-}$. The labels correspond to the position of the hydroxy group on the C_{60} cage (see Fig. 1).

correlate with the reactivity of the site of attachment. For *closed-shell* fullerene derivatives,^{13–15} calculated thermodynamic stabilities have already been shown to parallel the predictions of a model which uses free valence.¹² The correlation of F_r and anion stability found here supports the anion calculations as good predictors of the relative stabilities of the actual radical products. Thus whether the positional rearrangement of the hydroxy group around the cage, from the initial site of attack at random to the most stable one, is under kinetic or thermodynamic control, our calculations should give an indication of its final position. Taking a typical Arrhenius A factor for a unimolecular process to be between $1 \times 10^{11} \text{ s}^{-1}$ and 1×10^{15} s⁻¹, a half-life of 0.1 ms at 300 K suggests an activation energy in the range 40–60 kJ mol⁻¹. The fact that this is higher than the energy range of all the hydroxyfullerene anions does not of course prevent a rearrangement process to the thermodynamically most stable isomer; it is only required that, if activation control is in place, then the activation energies should parallel the product stabilities as suggested by the observed F_r -stability correlation.

Clearly, with such a small range of energies, the final radical product for this stage of the reaction may be a mixture of several of the more stable isomers. The pattern of stability of these species is that the most reactive positions towards an attacking radical (and the most stable final products) are the ones in which a hydroxy group has added to a carbon atom that is contiguous to a malonic acid group (sites number 3 and 21 for *e,e,e*; 22 and 41 for *trans-3,trans-3,trans-3*), or, in the case of *e,e,e* isomer, the sites corresponding to a further equatorial addition of malonate (27 and 45). The former are reminiscent of the reaction of carbon centred radicals, where contiguous addition leads to allylic and cyclopentadienyl radical type structures. It has been stated ¹⁶ that the reason for this is not

steric protection of the unpaired electron, but increased C-C hyperconjugation due to the steric relationship of the half-filled p-orbital and the C–C σ bond on the next atom. Hyperconjugation cannot account for the relative stabilities of these hydroxyfullerene anions; but hydrogen bonding between the carboxylic acid groups and the added hydroxy group would be a stabilising factor. In a model based on free valence, the rôle of the coordination number in the definition implies that contiguous addition will tend to be favoured as long as the average π -bond order exceeds $\sqrt{3} - \sqrt{2} \approx 0.32$. For the *e,e,e* isomer, the two further addition sites which are favoured (27, 45) are related to the formation of the equatorial tetra-adduct $C_{60}[C(COOH)_2]_4$, which has the fourth malonic acid group across the double bond defined by them.¹⁷ In fact, if an average free valence index is taken for each formal double bond, all the abundant isomers on the pathway for sequential addition of malonate groups are predicted. This is consistent with the fact that electronic considerations have been found ¹⁷ to predict the sequence of attack in a similar series of adducts, in a model using AM1 LUMO coefficients. The finding that free valence indices parallel more sophisticated calculations in this case is a further illustration of the continuing utility of simple graph-theory based methods in the rationalisation of experimental data. In this case our results suggest that after attack of the hydroxyl radical at the first encountered double bond, migration subsequently takes place to the position of highest free valence.

Acknowledgements

The authors acknowledge the EU TMR Scheme (Network Contract FMRX-CT98-0192 'BIOFULLERENES') for financial support of this research. The transient electronic spectra and kinetics of some of the mono-hydroxylated fullerene radicals were obtained by pulse radiolysis at the Paterson Institute for Cancer Research Free Radical Research Facility, Manchester, UK with the support of the European Commission through the Access to Large-Scale Facilities activity of the TMR Programme.

References

- 1 P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton and K. F. Preston, *Science*, 1991, **254**, 1183.
- 2 M. Walbiner and H. Fischer, J. Phys. Chem., 1993, 97, 4880.
- 3 J. R. Morton, F. Negri and K. F. Preston, Acc. Chem. Res., 1998, 31, 63.
- 4 N. M. Dimirtijevic, Chem. Phys. Letters, 1992, 194, 457.
- 5 N. M. Dimirtijevic, P. V. Kamat and R. W. Fessenden, J. Phys. Chem., 1993, 97, 615.
- 6 R. V. Bensasson, M. Brettreich, J. Frederiksen, H. Göttinger, A. Hirsch, E. J. Land, S. Leach, D. J. McGarvey and H. Schönberger, *Free Radical Biol. Med.*, 2000, **29**, 26.
- 7 G. V. Buxton, C. V. Greenstock, W. P. Helman and A. B. Ross, *J. Phys. Chem. Ref. Data*, 1998, **17**, 513.
- 8 P. R. Birkett, P. B. Hitchcock, H. W. Kroto, R. Taylor and D. R. M. Walton, *Nature*, 1992, **357**, 479; F. Diederich, L. Isaacs and D. Philp, *Chem. Soc. Rev.*, 1994, **23**, 243.
- 9 T. Clark, A Handbook of Computational Chemistry, John Wiley and Sons, New York, 1985, ch. 3.
- 10 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
- 11 C. A. Coulson, Faraday Discuss. Chem. Soc., 1947, 2, 9.
- 12 K. M. Rogers and P. W. Fowler, Chem. Commun., 1999, 2357.
- 13 S. J. Austin, P. W. Fowler, J. P. B. Sandall, P. R. Birkett, A. G. Avent, A. D. Darwish, H. W. Kroto, R. Taylor and D. R. M. Walton, *J. Chem. Soc.*, *Perkin Trans.* 2, 1995, 1027.
- 14 P. A. Cahill and C. M. Rohlfing, *Tetrahedron*, 1996, **52**, 5247.
- 15 B. W. Clare and D. L. Kepert, J. Mol. Struct. (THEOCHEM), 1995, 340, 125; B. W. Clare and D. L. Kepert, J. Mol. Struct. (THEOCHEM), 1995, 358, 79.
- 16 R. Taylor, Lecture Notes on Fullerene Chemistry: A Handbook for Chemists, Imperial College Press, London, 1999, p. 105.
- 17 A. Hirsch, I. Lamparth and T. Grösser, J. Am. Chem. Soc., 1994, 116, 9385.